Какие есть экосистемы. Экосистемы, виды экосистем

В экологии - науке о взаимодействии живых организмов между собой и с окружающей средой, - понятие экосистемы является одним из основных. Человеком, которым ввел его в обиход, стал британский ботаник и один из первых экологов в мире Артур Тенсли. Термин «экосистема» появился в 1935 г. Однако в отечественной экологии его предпочитали заменять такими понятиями, как «биогеоценоз» и «биоценоз», что не совсем верно.

В статье раскрыто понятие экосистемы, структуры экосистемы и ее отдельных составных частей.

Суть понятия

Все сообщества существующих ныне живых организмов связывают с неорганической средой тесные материально-энергетические связи. Так, растения могут развиваться только за счет постоянного поступления в них воды, кислорода, углекислого газа, минеральных солей. Жизнедеятельность гетеротрофов возможна только за счет автотрофов. Однако при этом они также нуждаются в воде и кислороде. Любое конкретное местообитание могло бы обеспечить необходимыми для жизни населяющих его организмов неорганическими соединениями лишь на короткий срок, если бы они не возобновлялись.

Возврат биогенных элементов в среду происходит непрерывно. Процесс идет как во время жизни организмов (дыхание, дефекация, экскрекция), так и после их смерти. Иными словами, их сообщество с неорганической средой образует определенную специфическую систему. В ней поток атомов, обусловленный жизнедеятельностью организмов, замыкается, как правило, в круговорот. По сути, это и есть экосистема. Структура экосистемы позволяет более глубоко изучить ее строение и характер существующих связей.

Определение экосистемы

Отцом экосистемной экологии считают американского биолога Юджина Одума, известного своими новаторскими работами в этой области. В связи с этим, пожалуй, логично будет привести именно его толкование рассматриваемого в статье термина.

По словам Ю. Одума, всякое единство, в состав которого входят все организмы данного участка, взаимодействующие с физической средой таким способом, когда создается поток энергии с четко определенной трофической структурой, видовым разнообразием и круговоротом веществ (обмен энергией и веществами между абиотической и биотической частями) внутри системы, есть экосистема. Структура экосистемы может рассматриваться с различной точки зрения. Традиционно выделяют три ее вида: трофическую, видовую и пространственную.

Соотношение понятий экосистема и биогеоценоз

Учение о биогеоценозе было разработано советским геоботаником и географом Владимиром Сукачевым в 1942 г. За рубежом оно практически не используется. Если обратиться к определениям терминов «экосистема» и «биогеоценоз», то видно, что между ним нет никакой разницы, по сути, они являются синонимами.

Однако на практике существует весьма распространенное мнение о том, что идентичными их можно назвать лишь с определенной долей условности. Термин «биогеоценоз» акцентирует внимание на связи биоценоза с каким-либо конкретным участком водной среды или суши. В то время как экосистема подразумевает любой абстрактный участок. В связи с этим биогеоценозы принято рассматривать как ее частные случаи.

О составе и структуре экосистем

В любой экосистеме можно выделить два компонента - абиотический (неживой) и биотический (живой). Последний, в свою очередь, делится на гетеротрофный и автотрофный, в зависимости от способа получения энергии организмами. Эти компоненты формируют так называемую трофическую структуру.

Единственным источником поддержания различных процессов в экосистеме и энергии для нее служат продуценты, т. е. организмы, способные усваивать энергию солнца. Они представляют собой первый трофический уровень. Последующие формируются за счет консументов. Замыкается трофическая структура экосистемы редуцентами, функция которых заключается в переводе неживого органического вещества в минеральную форму, которая в дальнейшем может быть усвоена автотрофными организмами. То есть наблюдается тот самый круговорот и непрерывный возврат биогенных элементов в среду, о котором говорил Ю.Одум.

Составляющие части экосистем

Структура сообщества экосистемы имеет следующие составляющие части:

  • климатический режим, который определяет освещение, влажность, температуру и иные физические характеристики среды;
  • включенные в круговорот неорганические вещества (азот, фосфор, вода и т. д.);
  • связывающие абиотическую и биотическую части в процессе круговорота энергии и вещества органические соединения;
  • создатели первичной продукции - продуценты;
  • фаготрофы (макроконсументы) - поедающие другие организмы гетеротрофы или крупные частицы органических веществ;
  • редуценты - бактерии и грибы (главным образом), разрушающие путем минерализации мертвое органическое вещество, возвращая его тем самым в круговорот.

Итак, биотическая структура экосистем состоит из трех трофических уровней: продуценты, консументы и редуценты. Именно они формируют так называемую биомассу (совокупная масса животных и растительных организмов) биогеоценоза. Для Земли в целом она равна 2423 миллиарда тонн, причем люди «дают» около 350 миллионов тонн, что пренебрежительно мало по сравнению с общим весом.

Продуценты

Продуценты - это всегда первое звено пищевой цепи. Данный термин объединяет все организмы, которые обладают способностью производить из неорганических веществ органические, т. е. являются автотрофами. Главным образом продуценты представлены зелеными растениями. Они синтезируют органические соединения из неорганических в процессе фотосинтеза. Кроме того, к ним можно отнести несколько видов хемотрофных бактерий. Они могут осуществлять исключительно химический синтез без энергии солнечного света.

Консументы

В биотическую структуру и состав экосистемы входят также гетеротрофные организмы, которые потребляют уже готовые органические соединения, создаваемые автотрофами. Их называют консументами. Они, в отличие от редуцентов, не обладают способностью разлагать до неорганических соединений органические вещества.

Интересно, что в отличных пищевых цепях один и тот же вид может принадлежать к разным порядкам консументов. Примеров тому - великое множество. В частности, мышь. Она - это консумент как первого, так и второго порядка, так как питается и растительноядными насекомыми, и растениями.

Редуценты

Термин «редуценты» имеет латинское происхождение и дословно переводится, как «восстанавливаю, возвращаю». Это в полной мере отражает их значение в экологической структуре экосистем. Редуценты или деструкторы - это организмы, которые разрушают, превращая в простейшие органические и неорганические соединения, отмершие останки живого. Они возвращают в почву в доступном для продуцентов виде воду и минеральные соли и, тем самым, замыкают круговорот веществ в природе. Ни одна экосистема обойтись без редуцентов не может.

Не меньший интерес представляет видовая и пространственная структуры экосистем. Они отражают видовое разнообразие организмов и их распределение в пространстве в соответствии с индивидуальными потребностями и условиями обитания.

Видовая структура

Видовая структура представляет собой совокупность всех видов, составляющих экосистему, их взаимосвязь между собой и соотношение численности. В одних случаях первенство - за животными, например, биоценоз кораллового рифа, в других ведущую роль играют растения (пойменные луга, дубовые и еловые леса, ковыльная степь). Видовая структура экосистемы отражает ее состав в том числе и по количеству видов. Он зависит главным образом от географического положения места. Наиболее известная закономерность заключается в том, что чем ближе к экватору, тем флора и фауна разнообразнее. Причем это касается всех форм жизни, от насекомых до млекопитающих, от лишайников и мхов до цветковых растений.

Так, один гектар дождевых лесов Амазонки - это дом почти для 400 деревьев, принадлежащих более, чем к 90 видам, а на каждом из них произрастает более 80 различных эпифитов. В то же время на аналогичной площади елового или соснового леса умеренной полосы произрастает всего лишь 8-10 видов деревьев, а в тайге разнообразие ограничивается 2-5 видами.

Горизонтальная пространственная структура экосистемы

Многочисленные виды экосистемы в пространстве могут распределяться различным образом, но всегда в соответствии с их потребностями и требованиями к местообитанию. Такое размещение животных и растений в экосистеме получило название пространственной структуры. Она может быть горизонтальной и вертикальной.

Живые организмы в пространстве распределяются неравномерно. Как правило, они формируют группировки, что является приспособленческой особенностью. Подобного рода скопления определяют горизонтальную структуру экосистемы. Она проявляется в пятнистости, узорчатости. Например, колонии кораллов, перелетные птицы, стада антилоп, заросли вереска (на фото выше) или брусники. К структурным (элементарным) единицам горизонтального строения растительных сообществ относится микрогруппировка и микроценоз.

Вертикальная пространственная структура

Совместно произрастающие группы различных видов растений, которые различаются по положению ассимилирующих органов (стебли и листья, корневища, луковицы, клубни и т.д.) называют ярусами. Именно они характеризуют вертикальную структуру экосистемы. Экосистема леса является наиболее ярким примером в этом случае. Как правило, ярусы представлены различными жизненными формами кустарников, кустарничков, деревьев, трав и мхов.

Ярусы пространственной структуры

Первый ярус практически всегда представлен крупными деревьями, у которых листва расположена высоко над землей и хорошо освещается солнцем. Второй (подпологовый) ярус составляют не такие рослые виды, они могут поглощать неиспользованный свет. Далее находится подлесок, представленный настоящими кустарниками (орешник, крушина, рябина и пр.), а также кустарниковыми формами деревьев (лесная яблоня, груша и т. д.), которые при нормальных условиях могли бы вырасти до высоты деревьев первого яруса. Следующий уровень - это подросток. К нему относят молодые деревья, которые в перспективе могут «вытянуться» в первый ярус. Например, сосна, дуб, ель, граб, ольха.

Для вертикального вида структуры экосистемы (пространственной) характерно наличие травно-кустарничкового яруса. Его составляют лесные кустарники и травы: земляника, кислица, ландыш, папоротники, черника, ежевика, малина и пр. За ним следует заключительный ярус - мохово-лишайниковый.

Как правило, увидеть чёткую границу между экосистемами в природе невозможно, если она не представлена различными факторами ландшафта (реки, горы, холмы, обрывы и пр.). Чаще всего они объединены плавными переходами. Последние фактически могут сами являться отдельными экосистемами. Образующиеся на стыке сообщества принято называть экотонами. Термин введен в 1905 г. американским ботаником и экологом Ф. Клементсом.

Роль экотона заключается в поддержании биологического разнообразия экосистем между которыми он находится за счет так называемого краевого эффекта - сочетание определенных факторов среды, присущих различным экосистемам. Это обуславливает большое условий для жизни, а следовательно, экологических ниш. В связи с этим в экотоне могут существовать виды из разных экосистем, а также сугубо специфичные виды. Примером такой зоны является устье реки с прибрежно-водными растениями.

Временные границы экосистем

Природа под влиянием различных факторов меняется. На одном и том же месте с течением времени могут развиваться различные экосистемы. Период времени, за который происходит перемена, может быть как длительным, так и относительно коротким (1-2 года). Длительность существования определенной экосистемы определяется так называемой сукцессией, т. е. закономерной и последовательной сменой на определенном участке территории одних сообществ другими в результате внутренних факторов развития биогеоценоза.

Понятие об экосистемах и их место в организации биосферы.

Структурной единицей биосферы является экосистема.

Экологическая система – это взаимосвязанная, единая функциональная совокупность живых организмов и среды их обитания. Составными частями экосистемы являются биоценоз (совокупность живых организмов) и биотоп (место их жизни, неживые компоненты).

ЭКОСИСТЕМА = БИОЦЕНОЗ + БИОТОП

Растения и животные, занимающие определенный биотоп (местообитание), составляют жизненное сообщество - биоценоз. Можно сравнить биотоп с сосудом, а биоценоз с его содержимым.

Термин «экосистема» был введен английским экологом Артур Тэнсли в 1935 году. В 1944 году В. Н. Сукачевым предложен термин «биогеоценоз», а В. И. Вернадский использовал понятие «биокосное тело». Главное значение этих понятий состоит в том, что они подчеркивают обязательное наличие взаимоотношений, взаимозависимости и причинно-следственных связей, иначе говоря, объединение компонентов в функциональное целое. В качестве примера экосистемы можно привести озеро, лес и т. п.

Биогеоценоз и экосистема – близкие по своей сути понятия, но данные разными учеными в разное время. Дискуссии по этому поводу среди ученых продолжаются до сих пор. Высказать свою точку зрения о том, различны или равнозначны эти понятия, можете и вы. Биоценоз возникает лишь тогда, когда каждый вид располагает собственной нишей и собственной средой обитания, когда он сумел приспособиться к окружающим условиям.

Различие между экосистемой и биогеоценозом следующие :

1. термин «экосистема» чаще употребляется в отечественной науке;

2. понятие «экосистема» имеет более широкое значение, чем «биогеоценоз»;

3. термин «биогеоценоз» употребляется лишь по отношению к природным сообществам, в экосистему включены Биосфера, Человек и его влияние на прочие компоненты сообщества.

Компоненты и состав экосистемы

Сообщества организмов связаны с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей.



Гетеротрофы живут за счет автотрофов , но нуждаются в поступлении таких неорганических соединений как кислород и вода. Возврат биогенных элементов в среду происходит как в течение жизни организмов, так и после их смерти, в результате разложения трупов. Сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

А. Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, охватывающие пространство любой протяженности (пень и весь земной шар). Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и четырех функционально различных компонентов: абиотическая среда, продуценты, консументы и редуценты.

1. Неживая (абиотическая) среда - это вода, минеральные вещества, газы, а также неживые органические вещества и гумус.

2 Продуценты (производители) - живые существа, способные из неорганических материалов среды строить органические вещества. Такую работу выполняют главным образом зеленые растения, производящие с помощью солнечной энергии из углекислого газа, воды и минеральных веществ органические соединения. Этот процесс называют фотосинтезом. При нем высвобождается кислород. Органические вещества, производимые растениями, идут в пищу животным и человеку, кислород используется для дыхания.

3. Консументы - потребители растительной продукции. Организмы, питающиеся только растениями, называют консументами первого порядка. Животных, питающихся только (или преимущественно) мясом, называют консументами второго порядка.

4. Редуценты (деструкторы, разлагатели) - группа организмов, которые разлагают остатки отмерших существ, например, растительные остатки или трупы животных, превращая их снова в исходное сырье (вода, минеральные вещества и углекислый газ), пригодное для продуцентов, превращающих эти составные части снова в органические вещества. К редуцентам относятся многие черви, личинки насекомых и другие мелкие почвенные организмы. Бактерии, грибы и другие микроорганизмы, превращающие живое вещество в минеральное, называют минерализаторами.

Цепи питания и экологические пирамиды

Солнце обеспечивает постоянный приток энергии, а живые организмы в конечном счете рассеивают ее в виде тепла. В процессе жизнедеятельности организмов происходит постоянный круговорот энергии и веществ, причем каждый вид использует лишь часть содержащейся в органических веществах энергии. В результате возникают цепи питания – трофические цепи, пищевые цепи , представляющие собой последовательность видов, извлекающих органические вещества и энергию из исходного пищевого вещества, при этом каждое предыдущее звено становится пищей для следующего (рис. 1).

В 1934 году Ч. Элтон предложил понятие цепи питания.

Цепи питания - это перенос вещества и энергии по трофическим уровням (строятся по принципу - каждое последующие звено питается предыдущим).

На каждом трофическом уровне экосистемы происходит борьба за первенство в обладании пищей. Это позволяет выжить популяциям с большей конкурентоспособностью (живучестью). Конкурентоспособность растений зависит от скорости роста, плодовитости, приспособленности к абиотическим факторам, а животных - от плодовитости, развитости органов чувств, скорости перемещения, выносливости, образа жизни.

Рисунок 1. Общая схема пищевой цепи

В любой цепи питания организм занимает определенное местоположение - экологическую нишу. Экологическую нишу могут занимать разные виды организмов, сходные по характеру питания.

Известный эколог Линдеманн в 1942г. сформулировал закон превращения энергии в экосистемах - «закон 10% ».

Экологическая пирамида – это графическое изображение взаимоотношений в цепях питания. Различают: по числу, по биомассе и по энергии.

Рисунок 2 – Экологическая пирамида

Любая экосистема состоит из среды обитания и сообщества ее обитателей. Любой , входящий в нее, взаимодействует со всеми остальными живыми и неживыми ее (абиотиками), образуя экологическую единицу, которая представляет собой самодостаточную систему. В состав крупных экосистем входят менее крупные, связанные с ней, как ветви дерева с его стволом. Биомы - крупнейшие экосистемы, на которые делится поверхность . Их принято называть по основному типу растительности, растущей в них. Каждая такая экосистема - это среда обитания для множества самых разнообразных видов растений и животных.

Ваша маленькая экосистема

В тропиках

Тропики – прекрасная возможность взглянуть на различные уровни в пищевой цепи с точки зрения энергии. На каждом уровне в цепи часть пищи преобразуется в энергию, а другая часть сохраняется. Это означает, что из некоего исходящего количества пищи на каждом последующем уровне определенная часть теряется, и чем выше уровень, тем меньше энергии там останется. Поэтому на каждом последующем уровне может существовать меньше видов животных, чем на предыдущем.

Общая характеристика экосистем, их градаций и устойчивости

Важнейшим экологическим понятием является понятие «экосистема», которое в определенном отношении близко к понятию «биогеоценоз», но оно является более общим и широким, чем последнее; экосистема и биогеоценоз состоят из двух компонентов: биоты и биотопа, но если биогеоценоз тесно связан с конкретной территорией земной поверхности, то экосистемы различных видов могут быть не связанными с конкретной территорией и быть глобальными.

Экосистема - любое сообщество живых существ и среда обитания, объединенные в единое функциональное целое, возникающее на основе взаимосвязи между этими организмами и средой их обитания, за счет чего эта система сохраняет свою устойчивость достаточно длительный промежуток времени.

Это наиболее общий вид понятия «экосистема». Иногда экосистема является синонимом биогеоценоза, но это относится к одной из градаций экосистем. Экосистемой является и капля жидкости, в которой существуют микроорганизмы, обладающие автотрофным и гетеротрофным способами питания (при условии длительного существования такой капли), и самая глобальная экосистема - .

Различают следующие градации экосистем: микроэкосистемы (например, ствол гниющего дерева, капля жидкости с населяющими ее микроорганизмами и т. д.), мезоэкосистемы (пруд, лес на данной территории, аквариум - как искусственная экосистема и др.), макроэкосистемы (океан, континент) и глобальная экосистема - биосфера планеты Земля. Мезоэкосистемы являются биогеоценозами (это относится к естественным мезоэкосистемам). Глобальная экосистема является совокупностью макроэкосистем, а последние - совокупностью мезоэкосистем или биогеоценозов, т. е. естественная мезоэкосистема (биогеоценоз) - это элементарное звено глобальной экосистемы, т.е. биосферы планеты Земля.

Важной характеристикой экосистемы является ее устойчивость.

Устойчивость системы - это способность системы оставаться относительно неизменной в течение определенного отрезка времени вопреки внутренним или внешним изменениям.

Устойчивость экосистемы - это способность экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних и внутренних факторов.

Устойчивость (в том числе и экологическая) для различных систем относительна, так как любая система подвергается изменениям, но до определенного момента система сохраняет свои основные признаки, изменяясь в некоторых деталях; при очень сильном внешнем или внутреннем воздействии система может измениться коренным образом или погибнуть. Последнее необходимо учитывать при воздействии на экосистему, особенно это важно учитывать при воздействии на биосферу Земли.

Все организмы взаимосвязаны друг с другом и с факторами, характерными для биотопа данного биогеоценоза через и энергии.

Характеристика экосистем как продукта взаимодействия абиотических и биотических факторов

В природе все факторы находятся в определенной взаимосвязи и их взаимодействие формирует определенное сообщество различных организмов, которое в совокупности с конкретным участком территории Земли образует биогеоценозы, или экосистемы в широком понимании этого понятия.

Биогеоценоз состоит из биотопа (иногда как синоним - местообитание вида или совокупности организмов) и биоты. Биотоп формируется под влиянием внешних условий, характерных для данной территории. К условиям биотопа приспосабливаются те или иные организмы и формируется биота данного биогеоценоза. Биота образована двумя компонентами - автотрофными и гетеротрофными организмами. Автотрофы и гетеротрофы состоят из популяций разных видов, приспособленных к совместному существованию и находящихся в определенном динамическом равновесии. На единице площади территории, занимаемой конкретным биоценозом, проживает определенное число особей данного вида, которые образуют популяцию. Число особей в популяции не может быть бесконечно большим, оно регулируется внешними факторами и соответствует правилу пирамиды.

Структура популяций разных видов определяется ее численностью, возрастной и половой составляющими и пространственным распределением на данной территории.

Возрастная структура популяций зависит от условий, которые необходимы для жизни организма в разных возрастах. Так, головастики лягушек живут в водной среде, а взрослые особи - на суше; устойчивость популяции зависит от возрастного состава и оптимального соотношения организмов разного возраста.

Пространство, которое занимает популяция, неоднородно по своим свойствам, в том числе и по наличию пищевой базы, поэтому заполнение данной территории происходит неодинаково. Для статичных организмов (например растений) плотность заселения зависит от наличия влаги, характера освещения, наличия минеральных солей в легко усваиваемой форме. Для подвижных организмов (членистоногие, позвоночные и т. д.) поиск пищи осуществляется за счет передвижения на большой или на ограниченной территории. По этому признаку различают оседлых и кочевых животных.

Оседлыми называют животных, проживающих на конкретной ограниченной территории.

Примером оседлых животных являются хищники (волки, лисы, львы и т. д.). Оседлость имеет и преимущества, и ограничения. Преимуществом является то, что животное хорошо знает свою территорию и не тратит лишних сил на поиски пищи. Однако на данной территории при сильной эксплуатации возможно истощение пищевых ресурсов, что ограничивает численность особей, живущих на этой территории.

Приспособлением к оседлому образу жизни являются:

1) охрана границ занимаемого пространства и прямая агрессия против чужой особи;

2) «мечение» своей территории пахучими веществами или другим способом (воробьи громко чирикают, суслики нападают на других сусликов, попавших на чужую территорию, кошки, собаки оставляют запаховые метки).

Кочевой образ жизни связан с перемещением организмов на другие территории, когда пищевые запасы на данном участке исчерпаны. К кочевым животным относят оленей, птиц, рыб, которые кочуют стаями, стадами (олени, зебры). Кочевой образ жизни несет меньшую угрозу истощения пищевых ресурсов, но защищенность особей популяции меньше, чем при оседлом образе жизни, а затраты на поиски пищи большие. Однако кочевой и оседлый образы жизни являются разными экологическими нишами, позволяющими реализовать нейтрализм как особый вид взаимоотношений организмов.

Численность популяции, как показано выше, зависит от разных факторов, в том числе и от биотического потенциала - наследственно обусловленной сопротивляемости вида неблагоприятному воздействию различных факторов среды.

Биотический потенциал включает потенциал размножаемости и потенциал выживаемости.

Потенциал размножаемости - это потенциальная возможность организмов увеличивать свою численность в геометрической прогрессии при благоприятных условиях среды (но это практически никогда не реализуется из-за сопротивляемости среды).

Потенциал выживаемости - степень сопротивляемости вида неблагоприятным воздействиям среды, выражаемая в сохранении определенной численности особей данного вида, проживающих на конкретной территории определенной площади.

При особо благоприятных условиях возможно резкое увеличение численности особей данной популяции, называемое популяционным взрывом. Он возможен при нарушении регуляции численности вида в данной среде. Так, в Австралии наблюдался популяционный взрыв для кроликов, которые в данной среде практически не имели врагов, а кормовая база была достаточно обильной.

Важнейшим фактором, регулирующим численность организмов, живущих на данной территории, является сопротивление среды, т. е. комплекс факторов биотического и абиотического характера, способствующих уменьшению численности организмов данного вида на единице площади, занимаемой популяцией.

В комплекс факторов, реализующих сопротивление среды, входят наличие кормовой базы, влажность, световой режим, конкуренция (как внутри, так и межвидовая), наличие врагов и другие факторы. Сопротивление среды тесно взаимосвязано с биотическим потенциалом и его составляющими: при нарушении равновесия между биотическим потенциалом и сопротивлением среды изменяется состав популяции - при уменьшении сопротивления среды численность популяции данного вида увеличивается, что может привести к популяционному взрыву и нарушению равновесия в биоценозе. Резкое увеличение сопротивления среды может привести к гибели популяции в данном биоценозе. Из-за колебания взаимоотношений потенциала выживаемости и сопротивления среды численность особей в популяции циклически колеблется, что приводит к возникновению популяционных волн.

Популяционные волны - колебания численности особей данной популяции в связи с влиянием различных факторов внешней среды (сезонность, стихийные бедствия, обеспеченность пищей и др.), что приводит к изменению концентрации отдельных генов, в результате появляются новые модификации генома, которые являются одним из факторов эволюционного процесса.

Характеристикой популяции является «плотность популяции», т.е. среднее число особей данного вида на единице поверхности или объема пространства. Эта плотность может быть и оптимальной, и критической как по верхнему, так и по нижнему пределам.

Критическая численность популяции по нижнему пределу - это минимальное число особей, проживающих на единице площади, необходимых для такого воспроизводства популяции, при котором вид еще сможет существовать на этой территории.

При относительной стабильности и полной сформированности биогеоценоза он обладает относительной устойчивостью и способностью к самовоспроизведению и длительному существованию. Одним из важнейших условий стабильности экосистемы является многообразие видов, составляющих эту экосистему, так как гибель отдельных видов не приведет к резкому изменению биотического равновесия. Однако резкое изменение условий, вымирание большого числа видов, составляющих данный биогеоценоз, приводит к его разрушению и гибели.

Исторически происходит смена биогеоценозов, причины которой весьма многочисленны. Одной из биологических причин смены биогеоценозов на данной территории является резкая смена абиотических факторов, что происходило в течение длительной геологической истории Земли.

Смена биогеоценозов может происходить и при относительно маломеняющихся абиотических факторах среды за счет заболачивания территорий, изменения физико-химических свойств субстрата, из-за замены одного доминирующего вида растительного сообщества другим. Так, попадание в сосновый бор семян ели приводит к тому, что ель укореняется (она - теневыносливое растение), вырастает, затеняет сосну, которая в условиях затенения не выживает. Сосновый бор заменяется еловым лесом, который по своим условиям резко отличается от бора, что приводит к изменению состава животных, т. е. один биоценоз заменяется другим. Этот пример относится к сукцессиям - смене одного биоценоза другим за счет того, что один доминирующий вид заменяет другой доминирующий вид (в данном примере ель заменила сосну).

Доминирующим видом в данном сообществе называют такой вид, который определяет главные особенности конкретного биоценоза и условия существования всех других видов данной экосистемы (в сосновом бору это сосна).

Итак, совокупность взаимодействия биотических и абиотических факторов (не учитывая воздействия человека) приводит к возникновению относительно устойчивых, способных к достаточно длительному существованию экосистем или биогеоценозов (климаксных систем), обеспечивающих нормальное функционирование организмов разных популяций, образующих данный конкретный биогеоценоз.

Классификация и свойства экосистем.

    Состав и структура экосистем.

    Энергетика и продукция экосистемы

    Экологические пирамиды

    Виды экосистем.

Состав и структура экосистем

Если обратится к лекции №1 данного курса можно обнаружить, что в область изучения экологии входят три основных уровня организации жизни: популяционный, экосистемный и биосферный. Для решения многих глобальных проблем и принятия решений ключевую роль играет изучение организменного уровня.

Как известно, живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии, образуя экосистемы.

Экосистема – это совокупность всех живых организмов, проживающих на общей территории вместе с окружающей их неживой средой.

Экосистема - основная функциональная единица в экологии, поскольку в неё входят и организмы и неживая среда - компоненты, взаимно влияющие на свойства друг друга и необходимые для поддержания жизни в той её форме, которая существует на Земле.

Примером может служить луг, лес, озеро.

Достаточно часто понятие экосистемы отождествляют с понятием биогеоценоз, однако эти термины не являются синонимами. Понятие экосистемы более широкое, охватывает все виды совокупностей живых организмов и среды обитания, биогеоценозом можно назвать лишь природные образования (лес, луг и т.п.). Т.о. любой биогеоценоз является экосистемой, но не любая экосистема является биогеоценозом.

В состав экосистемы представлен двумя группами компонентов: абиотическими – компоненты неживой природы (экотоп) и биотическими - компоненты живой природы (биоценоз).

Биоценоз – совокупность представителей растительного (фитоценоз), животного (зооценоз) мира и мира микроорганизмов (микробиоценоз). Экотоп включает две главные составляющие: климат во всех его многообразных проявлениях и геологическую среду – почвы-грунты или эдафотоп. Все компоненты данной системы находятся в постоянном и сложном взаимодействии (рис. 1).

Совершенно очевидным является тот факт, что экосистема является не однородной в пространстве и времени, в связи с чем, достаточно важным является рассмотрение пространственной структуры биогеоценоза. Прежде всего это ярусное строение фитоценозов, являющееся приспособлением в борьбе за солнечный свет. В широколиственных лесах выделяют до 6 ярусов.

В пространственной структуре биогеоценоза наблюдается также мозаичность – изменение растительного и животного сообщества по площади (концентрирование растительности вокруг водоемов).

Участие различных видов в формировании экосистемы не одинаково, так в экосистеме представители одного вида могут доминировать (например: сосна обыкновенная в сосновом бору), другие могут встречаться единично (снежный барс).

Виды, которые преобладают по численности, называются доминантными . Среди них есть такие, без которых другие виды существовать не могут или эдифакторы . Второстепенные виды - малочисленные и даже редкие играют огромную роль в формировании устойчивой экосистемы. Так был установлен всемирный закон устойчивости экосистем, согласно которому: чем выше биоразнообразие экосистемы, соответственно, чем больше «второстепенных» видов, тем она устойчивее.

С точки зрения трофической структуры (от греч.trophe– питание) экосистему можно разделить на два яруса:

    верхний автотрофный (самостоятельно питающийся) ярус или «зеленый пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений. Организмы, входящие в «зеленый пояс», называются автотрофными (от лат.: auto-сам, trofo-питание). Основной особенностью данных организмов является способность синтезировать органические вещества из неорганических в процессе фотосинтеза. Так как, будучи автотрофами, они создают первичное органическое вещество, продуцируя его из неорганического, они носят название продуцентов .

    нижний гетеротрофный (питаемый другими) ярус, или «коричневый пояс», в котором преобладает использование, трансформация и разложение сложных соединений. Организмы, входящие в данный пояс не могут строить собственное вещество из минеральных компонентов, вынуждены использовать то, что создано автотрофами, поедая их. Они называются гетеротрофами (от лат.: hetero-другими trofo-питание).

Однако специфика гетеротрофов может быть различна. Так часть организмов, использующая в питании готовые питательные вещества растений называются фитофагами - травоядными (фитос - pастение, фагос - пожиpатель, гр.) или растительноядными. Фитофаги - вторичные аккумуляторы солнечной энергии, первоначально накопленной растениями. консументами первого порядка (например: заяц, корова). Данная группа организмов относится кпервичным консументам .

Многим животным эволюция предопределила необходимость использования животных белков. Это группа зоофагов или хищников, поедающих фитофагов и более мелких хищников. Хищники - важнейшие pегулятоpы биологического равновесия: они не только pегулиpуют количество животных-фитофагов, но выступают как санитары, поедая в первую очередь животных больных и ослабевших. Примером может служить поедание хищными птицами мышей-полевок. Данная группа организмов относится квторичным консументам . Животные, питающиеся консументами второго порядка носят название консументов третьего порядка и т.д.

В любой системе неизбежно образуются органические отходы (трупы животных, экскременты и т.п.), которые также могут служить пищей для гетеротрофных организмов, получивших название редуцентов или сапрофитов .

Поэтому с биологической точки зрения в составе экосистемы удобно выделять следующие компоненты:

    неорганические вещества (C, N, CO2, H2O и др.) включающееся в круговороты.

    органические соединения (белки, углеводы, липиды, гумусовые вещества), связывающие биотическую и абиотическую части.

    воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.

    продуцентов, автотрофных организмов, в основном зеленые растения, которые могут производить пищу из простых неорганических веществ.

    макроконсументов или фаготрофов (от греч. phagos - пожиратель) - гетеротрофных организмов, основном животных, питающихся другими организмами или частицами органического вещества.

    микроконсументов, сапротрофов, деструктрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлеченного сапротрофами из растений и других организмов.

Все организмы, входящие в состав экосистемы, связаны тесными пищевыми связями (так один организм служит пищей для другого, который поедается третьим и т.д.). таким образом, в биогеоценозе образуется цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим, или так называемая трофическая цепь.

Примерами таких цепей могут служить:

    ягель олень волк (экосистема тундры);

    трава корова человек (антропогенная экосистема);

микроскопические водоросли (фитопланктон) жучки и дафнии (зоопланктон) плотва щука чайки (водная экосистема).

Одна трофичиские цепи в экосистеме тесно переплетаются, образуя трофические сети. Так широко известно явление «трофического каскада»: морские вадры питаются морскими ежами, которые едят бурые водоросли, уничтожение охотниками выдр привело к уничтожению водорослей вследствие роста популяции ежей. Когда запретили охоту на выдр, водоросли стали возвращаться на места обитания.

Значительную часть гетеротрофов составляют сапрофаги и сапрофиты (грибы), использующие энергию детрита. Поэтому различают два вида трофических цепей: цепи выедания , или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цени разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных

Энергетика и продукция экосистемы

Основным (и практически единственным) источником энергии в экосистеме является солнечный свет. Блок-схема потоков веществ и энергии в экосистеме представлена на рис. 3.

Поток энергии направлен в одну сторону, часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более новую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему покидает её в виде низкокачественной тепловой энергии (тепловой сток). Следует отметить, что только около 2 % поступающей на поверхность земли энергии усваивается автотрофными организмами, большая часть (до 98%) рассеивается в виде тепловой энергии.

Рис.3. Схема потоков веществ и энергии в экосистеме.

Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но её нельзя использовать вторично. В отличие от энергии, элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т.д.), и вода могут использоваться многократно. Эффективность повторного использования и размеры импорта и экспорта элементов питания сильно варьируют в зависимости от типа экосистемы.

На функциональной схеме сообщество изображено в виде пищевой сети, образованной автотрофами и гетеротрофами, связанными между собой соответствующими потоками энергии, круговоротами биогенных элементов.

Рис. 4. Поток энергии в пищевой цепи:

ОПЭ - общее поступление солнечной энергии; НЭ - неиспользованная экосистемой энергия; С - энергия, поглощенная растениями; Н- часть энергии (с первичной продукцией), использованная организмами трофических уровней; СН - часть поглощенной энергии, рассеянная в тепловой форме; Д 1 Д 2 , Д 3 -потери энергии на дыхание; Э - потери вещества в форме экскрементов и выделений; П в - валовая продукция продуцентов; П 1 - чистая первичная продукция; П 2 и П 3 - продукция консументов; в круге показаны биоредуценты -деструкторы мертвой органики.

Трофическая цепь в биогеоценозе есть одновременно цепь энергетическая, т. е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям (рис. 4).

Организмы-потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частично идущую на построение собственного органического вещества и связывающуюся в молекулах соответствующих химических соединений, а частично расходующуюся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, ускользания от врагов и т. п.

Таким образом, в экосистеме имеет место непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т. е. с ее потерями и возрастанием энтропии. Понятно, что это рассеивание все время компенсируется поступлением энергии от Солнца.

В процессе жизнедеятельности сообщества создается и расходуется органическое вещество. Это значит, что каждая экологическая система обладает определенной продуктивностью.

Продуктивность экологической системы - это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое может быть использовано в качестве пищи. Различают разные уровня продуцирования органического вещества: первичная продукция, создаваемая продуцентами в единицу вре­мени, и вторичная продукция - прирост за единицу времени массы консументов. Первичная продукция подразделяется на валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создавае­мая растением в единицу времени при данной скорости фотосинтеза, включая и траты растения на дыхание - от 40 до 70% от валовой продукции. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами. Вторичная продукция не делится уже на валовую и чис­тую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной ранее созданной продукции.

Все живые компоненты экосистемы составляют общую биомассу сообщества в целом или тех или иных групп организмов. Ее выражают в г/см 3 в сыром или сухом виде, или в энергетических единицах - в калориях, джоулях и т.п. Если скорость изъятия биомассы консументами отстает от скорости прироста растений, то это ведет к постепенному приросту биомассы продуцентов и к избытку мертвого органического вещества. Последнее приводит к заторфовыванию болот и зарастанию мелких водоемов. В стабильных сообществах практически вся продукция тратится в трофических сетях, и биомасса остается практически постоянной.

Экологические пирамиды

Функциональные взаимосвязи, т. е. трофическую структуру, можно изобразить графически, в виде так называемых экологических пирамид. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамида чисел , отражающая численность организмов на каждом уровне (пирамида Элтона); 2) пирамида биомассы , характеризующая массу живого вещества, - общий сухой вес, калорийность и т. д.; 3) пирамида продукции (или энергии), имеющая универсальный характер, показывающая изменение первичной продукции (или энергии) на последовательных трофических уровнях.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис. 5.). В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предьщущего доходитлишь 10% энергии) и, в-третьих - обратная зависимость метаболизма от размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

Рис. 5. Упрощенная схема пирамиды Элтона

Однако пирамиды численности будут сильно различаться по форме в разных экосистемах, поэтому численность лучше приводить в табличной форме, а вот - биомассу - в графиче­ской. Она четко указывает на количество всего живого вещест­ва на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 или на объем - г/м 3 и т. д.

В наземных экосистемах действует следующее правило пирамиды биомасс : суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников. Это правило соблюдается, и биомасса всей цепочки изменяется с изменениями величины чистой продукции, отношение годового прироста которой к биомассе экосистемы невелико и колеблется в лесах разных географических зон от 2 до 6%. И только в луговых растительных сообществах она может достигать 40-55%, а в отдельных случаях, в полупустынях - 70-75 %. На рис. 6 показаны пирамиды биомасс некоторых биоценозов. Как видно из рисунка, для океана приведенное выше правило пирамиды биомасс недействительно - она имеет перевернутый (обращенный) вид.

Рис. 6. Пирамиды биомассы некоторых биоценозов: П - продуценты; РК - растительноядные консументы; ПК - плотоядные консументы; Ф – фитопланктон; З - зоопланктон

Для экосистемы океана характерна тенденция накапливания биомассы на высоких уровнях, у хищников. Хищники живут долго и скорость оборота их генераций мала, но у продуцентов - у фитопланктонных водорослей, оборачиваемость может в сотни раз превышать запас биомассы. Это значит, что их чистая продукция и здесь превышает продукцию, поглощенную консументами, т. е. через уровень продуцентов проходит больше энергии, чем через всех консументов.

Отсюда понятно, что еще более совершенным отражением влияния трофических отношений на экосистему должно быть правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем.

Трофические или пищевые цепи могут быть представлены в форме пирамиды. Численное значение каждой ступени такой пирамиды может быть выражены числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м 2 сут -1 , количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами.

В конечном итоге все три правила пирамид отражают энер-гетические~отношения в экосистеме, а пирамида продукции (энергии) имеет универсальный характер.

В природе, в стабильных системах биомасса изменяется незначительно, т. е. природа стремится использовать полностью валовую продукцию. Знание энергетики экосистемы и количественные ее показатели позволяют точно учесть возможность изъятия из природной экосистемы того или иного количества растительной и животной биомасссы без подрыва ее продуктивности.

Человек получает достаточно много продукции от природных систем, тем не менее основным источником пищи для него является сельское хозяйство. Создав агроэкосистемы, человек стремится получить как можно больше чистой продукции растительности, но ему необходимо тратить половину растительной массы на выкармливание травоядных животных, птиц и т. д., значительная часть продукции идет в промышленность и теряется в отбросах, т. е. и здесь теряется около 90% чистой продукции и только около 10% непосредственно используется на потребление человеком.

В природных экосистемах энергетические потоки также изменяются по своей интенсивности и характеру, но этот процесс регулируется действием экологических факторов, что проявляется в динамике экосистемы в целом.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды. В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях pыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Виды экосистем:

Существует несколько классификаций экосистем. Во-первых экосистемы подразделяются по характеру происхождения и делятся на природные (болото, луг) и искусственные (пашня, сад, космический корабль).

По размерам экосистемы подразделяются на:

    микроэкосистемы (например, ствол упавшего дерева или поляна в лесу)

    мезоэкосистемы (лесной массив или степной колок)

    макроэкосистемы (тайга, море)

    экосистемы глобального уровня (планеты Земля)

Энергия – наиболее удобная основа для классификации экосистем. Различают четыре фундаментальных типа экосистем по типу источника энергии:

    движимые Солнцем, малосубсидируемые

    движимые Солнцем, субсидируемые другими естественными источниками

    движимые Солнцем и субсидируемые человеком

    движимые топливом.

В большинстве случаев могут использоваться и два источника энергии - Солнце и топливо.

Природные экосистемы, движимые Солнцем, малосубсидируемые - это открытые океаны, высокогорные леса. Все они получают энергию практически только от одного источника - Солнца и имеют низкую продуктивность. Ежегодное потребление энергии оценивается ориентировочно в 10 3 -10 4 ккал-м 2 . Организмы, живущие в этих экосистемах, адаптированы к скудному количеству энергии и других ресурсов и эффективно их используют. Эти экосистемы очень важны для биосферы, так как занимают огромные площади. Океан покрывает около 70 % поверхности земного шара. По сути дела, это основные системы жизнеобеспечения, механизмы, стабилизирующие и поддерживающие условия на «космическом корабле» - Земле. Здесь ежедневно очищаются огромные объемы воздуха, возвращается в оборот вода, формируются климатические условия, поддерживается температура и выполняются другие функции, обеспечивающие жизнь. Кроме того, без всяких затрат со стороны человека здесь производится некоторое количество пищи и других материалов. Следует сказать и о не поддающихся учету эстетических ценностях этих экосистем.

Природные экосистемы, движимые Солнцем, субсидируемые другими естественными источник , - это экосистемы, обладающие естественной плодородностью и производящие излишки органического вещества, которые могут накапливаться. Они получают естественные энергетические субсидии в виде энергии приливов, прибоя, течений, поступающих с площади водосбора с дождем и ветром органических и минеральных веществ и т. п. Потребление энергии в них колеблется от 1*10 4 до 4*10 4 ккал*м -2 *год -1 . Прибрежная часть эстуария типа Невской губы - хороший пример таких экосистем, которые более плодородны, чем прилегающие участки суши, получающие то же количество солнечной энергии. Избыточное плодородие можно наблюдать и в дождевых лесах.

Экосистемы, движимые Солнцем и субсидируемые человеком , - это наземные и водные агроэкосистемы, получающие энергию не только от Солнца, но и от человека в виде энергетических дотаций. Высокая продуктивность их поддерживается мышечной энергией и энергией топлива, которые тратятся на возделывание, орошение, удобрение, селекцию, переработку, транспортировку и т.п. Хлеб, кукуруза, картофель «частично сделаны из нефти». Самое продуктивное сельское хозяйство получает энергии примерно столько же, сколько самые продуктивные природные экосистемы второго типа. Их продукция достигает приблизительно 50 000 ккал*м -2 год -1 . Различие между ними заключается в том, что человек направляет как можно больше энергии на производство продуктов питания ограниченного вида, а природа распределяет их между многими видами и накапливает энергию на «черный день», как бы раскладывая ее по разным карманам. Эта стратегия называется «стратегией повышения разнообразия в целях выживания».

Индустриально-городские экосистемы, движимые топливом , - венец достижений человечества. В индустриальных городах высококонцентрированная энергия топлива не дополняет, а заменяет солнечную энергию. Пищу - продукт систем, движимых Солнцем, - в город ввозят извне. Особенностью этих экосистем является огромная потребность плотно населенных городских районов в энергии - она на два-три порядка больше, чем в первых трех типах экосистем. Если в несубсидируемых экосистемах приток энергии колеблется от 10 3 до 10 4 ккал*м -2 год -1 , а в субсидируемых системах второго и третьего типа - от 10 4 до 4*10 4 ккал*м -2 год -1 , то в крупных индустриальных городах потребление энергии достигает нескольких миллионов килокалорий на 1 м 2: Нью-Йорк -4,8*10 6 , Токио – 3*10 6 , Москва - 10 6 ккал*м -2 год -1 .

Потребление энергии человеком в городе в среднем составляет более 80 млн ккал*год -1 ; для питания ему требуется всего около 1 млн ккал*год -1 , следовательно, на все другие виды деятельности (домашнее хозяйство, транспорт, промышленность и т. д.) человек расходует в 80 раз больше энергии, чем требуется для физиологи­ческого функционирования организма. Разумеется, в развиваю­щихся странах положение несколько иное.

Экосистемы - это единые природные комплексы, которые образованы совокупностью живых организмов и среды их обитания. Изучением этих формирований занимается наука экология.

Термин «экосистема» появился в 1935 г. Использовать его предложил английский эколог А. Тенсли. Природный или природно-антропогенный комплекс, в котором как живые, так и косвенные составляющие находятся в тесной взаимосвязи посредством обмена веществ и распределения потока энергии - все это входит в понятие «экосистема». Виды экосистем при этом бывают различными. Эти основные функциональные единицы биосферы подразделяет на отдельные группы и изучает экологическая наука.

Классификация по происхождению

На нашей планете существуют различные экосистемы. Виды экосистем классифицируются определенным образом. Однако связать воедино все многообразие этих единиц биосферы невозможно. Именно поэтому существует несколько классификаций экологических систем. Например, разграничивают их по происхождению. Это:

  1. Естественные (природные) экосистемы . К ним относятся те комплексы, в которых круговорот веществ осуществляется без какого-либо вмешательства человека.
  2. Искусственные (антропогенные) экосистемы. Они созданы человеком и способны существовать только при его непосредственной поддержке.

Естественные экосистемы

Природные комплексы, существующие без участия человека, имеют свою внутреннюю классификацию. Существуют следующие виды естественных экосистем по энергетическому признаку:

Находящиеся в полной зависимости от солнечного излучения;

Получающие энергию не только от небесного светила, но и от других естественных источников.

Первый из этих двух видов экосистем является малопродуктивным. Тем не менее такие природные комплексы крайне важны для нашей планеты, поскольку существуют на огромных площадях и влияют на формирование климата, очищают большие объемы атмосферы и т.д.

Природные комплексы, получающие энергию от нескольких источников, являются наиболее продуктивными.

Искусственные единицы биосферы

Различны и антропогенные экосистемы. Виды экосистем, входящих в эту группу, включают в себя:

Агроэкосистемы, появляющиеся как результат ведения человеком сельского хозяйства;

Техноэкосистемы, возникающие в результате развития промышленности;

Урбаноэкосистемы, являющиеся результатом создания поселений.

Все это виды антропогенных экосистем, созданных при непосредственном участии человека.

Разнообразие естественных компонентов биосферы

Типы и виды экосистем природного происхождения бывают различными. Причем экологи выделяют их исходя из климатических и природных условий их существования. Так, различают три группы и целый ряд разнообразных единиц биосферы.

Основные виды экосистем природного происхождения:

Наземная;

Пресноводная;

Морская.

Наземные природные комплексы

Многообразие видов экосистем наземного типа включает в себя:

Арктическую и альпийскую тундру;

Хвойные бореальные леса;

Листопадные массивы умеренной зоны;

Саванны и тропические злаковники;

Чапарали, являющиеся районами с засушливым летом и дождливой зимой;

Пустыни (как кустарниковые, так и травянистые);

Полувечнозеленые тропические леса, расположенные в районах с ярко выраженными сухими и влажными сезонами;

Тропические вечнозеленые дождевые леса.

Кроме основных видов экосистем существуют и переходные. Это лесотундры, полупустыни и т. д.

Причины существования различных видов естественных комплексов

По какому принципу размещаются на нашей планете различные природные экосистемы? Виды экосистем естественного происхождения находятся в той или иной зоне в зависимости от количества осадков и температуры воздуха. Известно, что климат в различных уголках земного шара имеет существенные различия. При этом неодинакова и годовая сумма выпадающих осадков. Она может находиться в пределах от 0 до 250 и более миллиметров. При этом осадки выпадают либо равномерно в течение всех сезонов, либо приходятся в основной доле на определенный влажный период. Разнится на нашей планете и среднегодовая температура. Она может иметь значения от отрицательных величин или достигать тридцати восьми градусов тепла. Различно и постоянство нагрева воздушных масс. Оно может как не иметь существенных отличий в течение года, как, например, у экватора, так и постоянно меняться.

Характеристика естественных комплексов

Разнообразие видов природных экосистем наземной группы приводит к тому, что каждая из них обладает своими отличительными особенностями. Так, в тундрах, которые находятся к северу от тайги, наблюдается очень холодный климат. Для этой местности характерны отрицательная среднегодовая температура и смена полярного дня и ночи. Лето в этих краях длится всего несколько недель. При этом земля успевает оттаять на небольшую метровую глубину. Осадки в тундре выпадают менее чем на 200-300 миллиметров в течение года. Из-за таких климатических условий эти земли бедны растительностью, представленной медленно растущими лишайниками, мхом, а также карликовыми или стелющимися кустарниками брусники и черники. Временами можно встретить

Не отличается богатством и животный мир. Он представлен северными оленями, мелкими роющими млекопитающими, а также такими хищниками, как горностай, песец и ласка. Мир птиц представлен полярной совой, пуночкой и ржанкой. Насекомые в тундре в большинстве своем - виды двукрылых. Тундровая экосистема весьма ранима из-за плохой способности к восстановлению.

Большим разнообразием отличается тайга, расположенная в северных районах Америки и Евразии. Для этой экосистемы характерна холодная и долгая зима и многочисленные осадки в виде снега. Растительный мир представлен вечнозелеными хвойными массивами, в которых растет пихта и ель, сосна и лиственница. Представители животного мира - лоси и барсуки, медведи и белки, соболя и росомахи, волки и рыси, лисы и норки. Для тайги характерно наличие множества озер и болот.

Широколиственными лесами представлены следующие экосистемы. Виды экосистем этого типа находятся на востоке США, в Восточной Азии и в Западной Европе. Это зона сезонного климата, где температура зимой опускается ниже нулевой отметки, а в течение года выпадает от 750 до 1500 мм осадков. Растительный мир такой экосистемы представлен такими широколиственными деревьями, как бук и дуб, ясень и липа. Есть здесь кустарники и мощный травяной слой. Животный мир представлен медведями и лосями, лисицами и рысями, белками и землеройками. Обитают в такой экосистеме совы и дятлы, дрозды и соколы.

Степные умеренные зоны находятся в Евразии и Северной Америке. Их аналогами являются туссоки в Новой Зеландии, а также пампасы в Южной Америке. Климат в этих районах отличается сезонностью. В летний период воздух нагревается от умеренно теплых значений до весьма высоких. Зимние температуры отрицательны. В течение года здесь наблюдается от 250 до 750 миллиметров осадков. Растительный мир степей представлен в основном дерновинными злаками. Среди животных встречаются бизоны и антилопы, сайгаки и суслики, кролики и сурки, волки и гиены.

Чапарали располагаются в Средиземноморье, а также в Калифорнии, Грузии, Мексике и на южных берегах Австралии. Это зоны мягкого умеренного климата, где выпадает от 500 до 700 миллиметров осадков в течение года. Из растительности здесь имеются кустарники и деревья с вечнозелеными жесткими листиками, такие как дикая фисташка, лавр и др.

Такие экологические системы, как саванны, располагаются в Восточной и Центральной Африке, Южной Америке и в Австралии. Значительная их часть находится в Южной Индии. Это зоны жаркого и сухого климата, где в течение года выпадает от 250 до 750 мм осадков. Растительность в основном - злаковая травянистая, только кое-где встречаются редкие листопадные деревья (пальмы, баобабы и акации). Животный мир представлен зебрами и антилопами, носорогами и жирафами, леопардами и львами, грифами и т. д. Много в этих краях кровососущих насекомых, таких как муха цеце.

Пустыни встречаются в некоторых районах Африки, на севере Мексики и т. д. Климат здесь сухой, с выпадением осадков менее 250 мм в год. Дни в пустынях жаркие, а ночи холодные. Растительность представлена кактусами и редкостойными кустарниками с обширными корневыми системами. Среди представителей животного мира распространены суслики и тушканчики, антилопы и волки. Это хрупкая экосистема, легко разрушающаяся под воздействием водной и ветровой эрозии.

Полувечнозеленые тропические листопадные леса встречаются в Центральной Америке и Азии. В этих зонах наблюдается сменность сухого и влажного сезонов. Среднегодовое количество осадков - от 800 до 1300 мм. Тропические леса населяет богатый животный мир.

Дождевые тропические вечнозеленые леса находятся во многих уголках нашей планеты. Есть они в Центральной Америке, на севере Южной Америки, в центральной и западной части экваториальной Африки, в прибрежных районах северо-западной Австралии, а также на островах Тихого и Индийского океанов. Теплые климатические условия в этих краях не отличаются сезонностью. Обильные осадки превышают предел в 2500 мм в течение года. Эта система отличается огромным разнообразием растительного и животного мира.

Существующие природные комплексы, как правило, не имеют каких-либо четких границ. Между ними обязательно находится переходная зона. В ней не только происходит взаимодействие популяций разных видов экосистем, но и встречаются особые виды живых организмов. Таким образом, переходная зона включает в себя большее разнообразие представителей фауны и флоры, чем близлежащие к ней территории.

Водные природные комплексы

Данные единицы биосферы могут существовать в пресных водоемах и морях. К первым из них относятся такие экосистемы, как:

Лентические - это водохранилища, то есть стоячие воды;

Лотические, представленные ручьями, реками, родниками;

Области апвеллинга, где осуществляется продуктивное рыболовство;

Проливы, бухты, лиманы, являющиеся эстуариями;

Глубоководные зоны рифов.

Пример природного комплекса

Экологи различают большое разнообразие видов природных экосистем. Тем не менее существование каждой из них происходит по одной и той же схеме. Для того чтобы наиболее глубоко понять взаимодействие всех живых и неживых существ в единице биосферы, рассмотрим вид Все проживающие здесь микроорганизмы и животные оказывают непосредственное влияние на химический состав воздуха и почвы.

Луг - это равновесная система, включающая в себя различные элементы. Одни из них - макропродуценты, которыми является травянистая растительность, создают органическую продукцию этого наземного сообщества. Далее жизнь природного комплекса осуществляется за счет биологической пищевой цепочки. Растительные животные или первичные консументы питаются луговыми травами и их частями. Это такие представители фауны, как крупные травоядные и насекомые, грызуны и многие виды беспозвоночных (суслик и заяц, куропатка и т. д.).

Первичные консументы идут в пищу вторичным, к которым относят плотоядных птиц и млекопитающих (волк, сова, ястреб, лисица и т. д.). Далее к работе подключаются редуценты. Без них невозможно полное описание экосистемы. Виды многих грибов и бактерий и являются этими элементами в природном комплексе. Редуценты разлагают органические продукты до минерального состояния. Если температурные условия благоприятны, то растительные остатки и мертвые животные быстро распадаются на простые соединения. Некоторые из этих компонентов содержат в своем составе элементы питания, которые выщелачиваются и используются повторно. Более устойчивая часть органических остатков (гумус, целлюлоза и т. д.) разлагается медленнее, питая растительный мир.

Антропогенные экосистемы

Рассмотренные выше природные комплексы способны существовать без какого-либо вмешательства человека. Совсем по-другому обстоит дело в антропогенных экосистемах. Их связи работают только при непосредственном участии человека. К примеру, агроэкосистема. Основным условием ее существования является не только использование солнечной энергии, но и поступление "дотаций" в виде своеобразного горючего.

Частично эта система похожа на природную. Сходство с естественным комплексом наблюдается во время роста и развития растений, происходящего за счет энергии Солнца. Однако ведение сельского хозяйства невозможно без подготовки почвенного слоя и уборки урожая. А эти процессы требуют энергетических субсидий человеческого общества.

К какому виду экосистем относится город? Это антропогенный комплекс, в котором большое значение имеет энергия топлива. Ее расход по сравнению с потоком солнечных лучей выше в два-три раза. Город можно сравнить с глубоководными или пещерными экосистемами. Ведь существование именно этих биогеоценозов во многом зависит от поступления веществ и энергии извне.

Городские экосистемы возникли в результате исторического процесса, именуемого урбанизацией. Под его влиянием население стран покидало сельские местности, создавая большие поселения. Постепенно города все больше и больше усиливали свою роль в развитии общества. При этом для улучшения жизни человек сам создал сложную урбанистическую систему. Это привело к некоторому отрыву городов от природы и нарушению существующих естественных комплексов. Систему населенного пункта можно назвать урбанистической. Однако по мере развития промышленности все несколько изменилось. К какому виду экосистем относится город, на территории которого работает завод или фабрика? Скорее, ее можно назвать промышленно-урбанистической. Этот комплекс состоит из жилых зон и территорий, на которых располагаются объекты, производящие разнообразную продукцию. Экосистема города отличается от природной более обильным и, кроме того, ядовитым потоком различных отходов.

Для того чтобы улучшить среду своего обитания, человек создает вокруг своих населенных пунктов так называемые зеленые пояса. Они состоят из травяных газонов и кустарников, деревьев и прудов. Эти небольшие по размеру природные экосистемы создают органическую продукцию, которая не играет особой роли в городской жизни. Для существования людям нужны пища, горючее, вода и электричество извне.

Процесс урбанизации значительно изменил жизнь нашей планеты. Воздействие искусственно созданной антропогенной системы в большой степени изменило природу на обширных территориях Земли. При этом город влияет не только на те зоны, где находятся сами архитектурно-строительные объекты. Он воздействует на огромные территории и за своими пределами. К примеру, при увеличении спроса на продукцию деревообрабатывающей промышленности человек вырубает лесные массивы.

В процессе функционирования города в атмосферу попадает множество разнообразных веществ. Они загрязняют воздух и изменяют климатические условия. В городах выше облачность и меньше солнечного света, больше тумана и мороси, а также немного теплее, чем в близлежащей сельской местности.