Как выяснить рациональным или иррациональным является число. Иррациональное число

Иррациональное число может быть представлено в виде бесконечной непериодической дроби. Множество иррациональных чисел обозначают $I$ и оно равно: $I=R / Q$ .

Например . Иррациональными числами являются:

Операции над иррациональными числами

На множестве иррациональных чисел можно ввести четыре основные арифметические операции: сложение , вычитание , умножение и деление ; но ни для одной из перечисленных операций множество иррациональных чисел не обладает свойством замкнутости. Например, сумма двух иррациональных чисел может быть числом рациональным.

Например . Найдем сумму двух иррациональных чисел $0,1010010001 \ldots$ и $0,0101101110 \ldots$ . Первое из этих чисел образовано последовательностью единиц, разделенных соответственно одним нулем, двумя нулями, тремя нулями и т.д., второе - последовательностью нулей, между которыми поставлены одна единица, две единицы, три единицы и т.д.:

$$0,1010010001 \ldots+0,0101101110 \ldots=0,111111=0,(1)=\frac{1}{9}$$

Таким образом, сумма двух заданных иррациональных чисел есть число $\frac{1}{9}$ , которое является рациональным.

Пример

Задание. Доказать, что число $\sqrt{3}$ является иррациональным.

Доказательство. Будем использовать метод доказательства от противного. Предположим, что $\sqrt{3}$ число рациональное, то есть может быть представлено в виде дроби $\sqrt{3}=\frac{m}{n}$ , где $m$ и $n$ - взаимно простые натуральные числа.

Возведем обе части равенства в квадрат, получим

$$3=\frac{m^{2}}{n^{2}} \Leftrightarrow 3 \cdot n^{2}=m^{2}$$

Число 3$\cdot n^{2}$ делится на 3. Поэтому $m^{2}$ и, следовательно, $m$ делится на 3. Полагая $m=3 \cdot k$, равенство $3 \cdot n^{2}=m^{2}$ можно записать в виде

$$3 \cdot n^{2}=(3 \cdot k)^{2} \Leftrightarrow 3 \cdot n^{2}=9 \cdot k^{2} \Leftrightarrow n^{2}=3 \cdot k^{2}$$

Из последнего равенства следует, что $n^{2}$ и $n$ делятся на 3, следовательно, дробь $\frac{m}{n}$ можно сократить на 3. Но по предположению дробь $\frac{m}{n}$ несократима. Полученное противоречие и доказывает, что число $\sqrt{3}$ непредставимо в виде дроби $\frac{m}{n}$ и, следовательно, иррационально.

Что и требовалось доказать.

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

Какие числа являются иррациональными? Иррациональное число — это не рациональное вещественное число, т.е. оно не может быть представлено как дробь (как отношение двух целых чисел), где m — целое число, n — натуральное число . Иррациональное число можно представить как бесконечную непериодическую десятичную дробь.

Иррациональное число не может иметь точного значения. Только в формате 3,333333…. Например , квадратный корень из двух - является числом иррациональным.

Какое число иррациональное? Иррациональным числом (в отличии от рациональных) называется бесконечная десятичная непериодическая дробь.

Множество иррациональных чисел зачастую обозначают заглавной латинской буквой в полужирном начертании без заливки. Т.о.:

Т.е. множество иррациональных чисел это разность множеств вещественных и рациональных чисел.

Свойства иррациональных чисел.

  • Сумма 2-х неотрицательных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
  • Всякое вещественное трансцендентное число - это иррациональное число.
  • Все иррациональные числа являются или алгебраическими, или трансцендентными.
  • Множество иррациональных чисел везде плотно на числовой прямой: меж каждой парой чисел есть иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел бесконечно, является множеством 2-й категории.
  • Результатом каждой арифметической операции с рациональными числами (кроме, деления на 0) является рациональные числа. Результатом арифметических операций над иррациональными числами может стать как рациональное, так и иррациональное число.
  • Сумма рационального и иррационального чисел всегда будет иррациональным числом.
  • Сумма иррациональных чисел может быть рациональным числом. Например, пусть x иррациональное, тогда y=x*(-1) тоже иррациональное; x+y=0, а число 0 рациональное (если, например, сложить корень любой степени из 7 и минус корень такой же степени из семи, то получим рациональное число 0).

Иррациональные числа, примеры.

γ ζ (3) — ρ — √2 — √3 — √5 — φ δs α e π δ

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания