Что входит в систему возбуждения синхронных двигателей. Синхронный электродвигатель с обмоткой возбуждения

Синхронная машина в обычном исполнении состоит из неподвижной части - статора, в пазах которого помещается трехфазная обмотка, и вращающейся части - ротора с электромагнитами, к обмотке которых подводится постоянный ток при помощи контактных колец и наложенных на них щеток (рис. 1). Статор синхронной машины ничем не отличается от статора асинхронной машины. Ротор её выполняется или явнополюсным (с выступающими полюсами, рис. 1), или неявнополюсным (цилиндрический ротор, рис. 2).

Рис. 1 Явнополюсная синхронная машина (2 p = 8). Рис. 2 Неявнополюсная синхронная машина (2 p = 2).

В зависимости от рода первичного двигателя, которым приводится во вращение синхронный генератор, применяются названия: паротурбинный генератор или сокращенно турбогенератор (первичный двигатель - паровая турбина), гидротурбинный генератор или сокращенно гидрогенератор (первичный двигатель - гидравлическая турбина) и дизель-генератор (первичный двигатель - дизель). Турбогенераторы - быстроходные неявнополюсные машины, выполняемые в настоящее время, как правило, с двумя полюсами. Турбогенератор вместе с паровой турбиной, с которой он механически соединяется называется турбоагрегатом.

Гидрогенераторы - в обычных случаях тихоходные явнополюсные машины, выполняемые с большим числом полюсов и с вертикальным валом

Дизель-генераторы представляют собой в большинстве случаев машины с горизонтальным валом. Синхронные машины небольшой мощности иногда выполняются с неподвижными электромагнитами, помещенными на статоре, и обмоткой переменного тока, заложенной в пазы ротора, изготовленного из листовой электротехнической стали; в этом случае обмотка переменного тока соединяется с внешней цепью через контактные кольца и щетки.

Ту часть синхронной машины, в обмотке которой наводится э. д. с. , называют якорем. Электромагниты (полюсы) вместе с замыкающим их ярмом образуют полюсную систему; ее называют индуктором. В синхронных машинах обычной конструкции статор служит якорем, ротор - полюсной системой. Основные преимущества конструкции с вращающимися полюсами заключаются в том, что здесь возможно осуществить более надежную изоляцию обмотки неподвижного якоря, более просто, без скользящих контактов соединить ее с сетью переменного тока.

Устройство скользящих контактов для подвода постоянного тока в обмотке электромагнитов, называемой обмоткой возбуждения, не представляет затруднений, так как мощность, подводимая к этой обмотке, составляет небольшую долю [(0, 3 - 2)%] номинальной мощности машины. Кроме того, нужно отметить, что в современных мощных турбогенераторах, работающих с частотой вращения 3000 об/мин, окружная частота ротора достигает 180 - 185 м/сек; при такой частоте не представлялось бы возможным выполнить вращающийся якорь, собранный из тонких листов, механически достаточно прочным.

Ротор современного турбогенератора выполняется из цельной стальной поковки, высокого качества. Катушки обмотки возбуждения закладываются в пазы, выфрезерованные на внешней поверхности ротора, и закрепляются в пазах прочными металлическими клиньями. Лобовые части обмотки возбуждения закрываются кольцевыми бандажами, выполненными из особо прочной стали. Ток для питания обмотки возбуждения синхронная машина получает обычно от небольшого генератора постоянного тока, помешенного на общем валу с ней или механически с ней соединенного. Такой генератор называется возбудителем. В случае мощного турбогенератора вал возбудителя с валом турбо генератора соединяется при помощи полуэластичной муфты.

В синхронных генераторах применяют два основных способа возбуждения: независимое (рис. а.) и самовозбуждение (рис. б.)

При независимом возбуждении обмотка возбуждения питается от генератора постоянного тока с независимой обмоткой возбуждения, расположенного на валу ротора синхронного генератора и вращающегося вместе с ним (большой мощности). При самовозбуждении питание обмотки возбуждения осуществляется самим синхронным генератором через выпрямитель (малой и средней мощности).

При помощи первичного двигателя роториндуктор вращается. Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения ротора равна скорости вращения магнитного поля – отсюда название синхронная машина.

При вращении ротора магнитный поток полюсов пересекает статорную обмотку и наводит в ней ЭДС по закону электромагнитной индукции: E = 4, 44*f*w*kw*Ф, где: f – частота переменного тока, Гц; w – количество витков; kw – обмоточный коэффициент; Ф – магнитный поток. Частота индуктированной ЭДС (напряжения, тока) синхронного генератора: f =p *n/60, где: р – число пар полюсов; n – скорость вращения ротора, об/мин.

Заменив в: E = 4, 44*(п*р/60)*w*kw*Ф и, определив что: 4, 44*(р/60)*w*kw – относится к конструкции машины и создаёт конструктивный коэффициент: C = 4. 44*(р/60)*w*kw. Тогда: Е = СЕ*n*Ф. Таким образом, как и у любого генератора, основанного на законе электромагнитной индукции, индуктированная ЭДС пропорциональна магнитному потоку машины и скорости вращения ротора.

Синхронные машины применяются также в качестве электрического двигателя, особенно в установках большой мощности (свыше 50 к. Вт)

Для работы синхронной машины в режиме двигателя обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент М, который увлекает его со скоростью магнитного поля.

Для включения генератора в сеть необходимо: одинаковое чередование фаз в сети и генераторе; равенство напряжения сети и ЭДС генератора; равенство частот ЭДС генератора и напряжения сети; включать генератор в тот момент, когда ЭДС генератора в каждой фазе направлена встречно напряжению сети. Невыполнение этих условий ведёт к тому, что в момент включения генератора в сеть возникают токи, которые могут оказаться большими и вывести генератор из строя.

При рассмотрении принципа действия синхронного генератора было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n 1 . При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС.

Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля.

Основным способом возбуждения синхронных машин является электромагнитное возбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле.

До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r 1) и подвозбудителя (r 2).

В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах большой мощности -- турбогенераторах -- иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.

Рис. 1.1.

Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора.

Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе.

В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 1.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) -- генератора постоянного тока.

Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД.

В синхронных генераторах, в том числе гидрогенераторах (см. § 1.2), получил распространение принцип самовозбуждения (рис. 1.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.

Рис. 1.2.

На рис. 1.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки.

В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А.

Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности).

В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт.

Синхронными машинами называют устройства частота вращения ротора, в которых она всегда равна или же кратна аналогичному показателю магнитного поля внутри воздушного зазора, которое создается за счет тока проходящего по якорной обмотке. В основе работы данного типа машин лежит принцип электромагнитной индукции.

Возбуждение синхронных машин

Возбуждение синхронных машин может производиться за счет электромагнитного воздействия или же постоянного магнита. В случае с электромагнитным возбуждением применяется специальный генератор постоянного тока, который и питает обмотку, в связи со своей основной функцией данное устройство получило название возбудитель. Стоит отметить, что система возбуждения также делится на два вида по способу воздействия – прямой и косвенный. Прямой метод возбуждения подразумевает, что вал синхронной машины напрямую соединен механическим способом с ротором возбудителя. Косвенный же метод предполагает, что для того чтобы заставить ротор вращаться используется другой двигатель, например асинхронная электромашина.

Наибольшее распространение сегодня получил именно прямой метод возбуждения. Однако в тех случаях, когда предполагается работа системы возбуждения с мощными синхронными электромашинами применяют генераторы независимого возбуждения, на обмотку которых ток подается с другого источника постоянного тока, называемого подвозбудителем. Несмотря на всю громоздкость, данная система позволяет добиться большей стабильности в работе, а также более тонкой настройки характеристик.

Устройство синхронной машины

У синхронной электрической машины существует две основных составляющих части: индуктор (ротор) и якорь (статор). Самой оптимальной и потому распространенной на сегодняшний день является схема, когда якорь располагают на статоре, в то время как индуктор располагается на роторе. Обязательным условием для функционирования механизма является наличие между этими двумя частями воздушной прослойки. Якорь в данном случае представляет собой неподвижную часть устройства (статор). Он может состоять как из одной, так и из нескольких обмоток, в зависимости от необходимой мощности магнитного поля, которое он должен создавать. Сердечник статора, как правило, набирается из отдельных тонких листов электротехнической стали.


Индуктор в синхронных электрических машинах представляет собой электромагнит, при этом концы его обмотки выводятся непосредственно на контактные кольца на валу. Во время работы индуктор возбуждается постоянным током, благодаря которому ротор и создает электромагнитное поле, взаимодействующее с магнитным полем якоря. Таким образом, благодаря постоянному току, возбуждающему индуктор, достигается постоянная частота вращения магнитного поля внутри синхронной машины.

Принцип действия синхронных машин

В основе принципа работы синхронной машины лежит взаимодействие двух типов магнитных полей. Одно из этих полей образуется якорем, другое же возникает вокруг возбуждаемого постоянным током электромагнита – индуктора. Непосредственно после выхода на рабочую мощность магнитное поле создаваемое статором и вращающееся внутри воздушной прослойки, сцепляется с магнитными полями на полюсах индуктора. Таким образом, для того чтобы синхронная машина достигла рабочей частоты вращения, требуется определенное время на ее разгон. После того как машина разгоняется до необходимой частоты, на индуктор подается питание от источника постоянного тока.

Дмитрий Левкин

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся , состоит из ротора и статора. Статор - неподвижная часть, ротор - вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)

Принцип работы

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется можно прочитать в статье " ".


Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитные поля ротора и статора сцепленные друг с другом

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

  • где N s – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка - прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается "беличья клетка", которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках "беличьей клетки" и ротор начинает вращаться подобно тому, как запускаются .

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно "беличья клетка" не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами . В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.