В каких фазовых состояниях существуют полимеры. Физические и фазовые состояния полимеров

Составляющих эти тела, расположены преим. вдоль нек-рых направлений - осей ориентации. Так, в могут реализоваться виды плоскостной ориентации: двухосная, радиальная. Простейший и наиб. распространенный вид ориентации линейных - одноосная ориентация.

Ориентир. широко распространены в растит. мире (напр., хлопок, лен) и животном (сухожилия, шерсть и др.). Практически всюду в природе, где требуются прочные и гибкие элементы структуры, они формируются из ориентир. .

В технике ориентир. получают в осн. ориентац. вытягиванием (на десятки - тысячи процентов) изотропных полимерных тел, нагретых выше т-р стеклования. В результате цепные , хаотически (статистически) ориентированные в исходном теле, под воздействием внеш. направленного растягивающего усилия приобретают ту или иную степень ориентации. В аморфном гибкоцепном ориентир. состояние является неравновесным и, чтобы его зафиксировать, необходимо охладить ниже т-ры стеклования, не снимая растягивающего напряжения. В случае гибкоцепных кристаллизующихся ориентированное состояние можно считать равновесным ниже т-ры кристаллитов и снятие растягивающего напряжения при т-ре вытяжки не ведет к разориентации, т. к. кристаллиты образуют ориентир. каркас, сохраняющий аморфные участки полимерного тела в ориентированном состоянии .

При получении ориентир. гибкоцепных двухступенчатым методом вначале осуществляют ориентацию р-ра или . Этого достигают созданием потоков с градиентами скорости (поперечным или продольным), в результате чего длинные цепные ориентируются преим. вдоль направления потока. Происходящая при этом фиксирует достигнутое состояние, что приводит к образованию ориентир. . Послед. вытягивание в твердой фазе доводит (или изделие) до сверхвысокоориентир. состояния.

Для жесткоцепных ориентированное состояние является равновесным и достигается двухступенчатым методом: вначале при сравнительно умеренной т-ре вытягиванием из р-ра формуют ориентир. "заготовку", затем следует термообработка при повыш. т-ре, приводящая к значит. увеличению ориентац. порядка в (явление типа направленной ).

Ориентир. содержат характерные надмолеку-лярные образования-фибриллы-с поперечным размером ~ 10-100 нм и протяженностью не менее ~1-10 мкм.

Одноосноориентир. полимерные тела отличаются высокой мех., акустич., оптич., электрич. и др. св-в. Поэтому чувствительные к методы (напр., дифрактометрия, акусто-спектроскопия, измерение двулучепреломления) эффективны при изучении ориентир. . Последним присуща также характерная аномалия термич. расширения: отрицат. коэф. расширения вдоль оси ориентации. Это связано с поперечными колебаниями распрямленных участков цепных , амплитуда к-рых много больше, чем продольных колебаний, а также с конформац. "скручиванием" ориентир. участков в аморфных областях, что ведет к сокращению размеров этих областей вдоль оси ориентации . Важное техн. св-во ориентир. -повыш. при растяжении и жесткость вдоль оси ориентации при сохранении достаточной гибкости. Это обусловлено тем, что вдоль оси ориентации работают гл. обр. хим. связи, в перпендикулярном направлении-межмолекулярные. Так, теоретич. значения и модуля продольной упругости для волокна составляют соотв. 20-30 и 250 ГПа; для техн. ориентир. полимерных волокон 0,5-1,0 ГПа, 20-50 ГПа; для высокоориентир. волокон 5-10 ГПа, 100-150 ГПа, что близко к теоретич. значениям и является большим техн. достижением.

Превышает 10 12 -10 13 н·сек/м 2 (10 13 – 10 14 пуаз ) , а – 10 3 -10 4 Мн/м 2 (10 4 -10 5 кгс/см 2 ) .

Переход полимеров из вязкотекучего или высокоэластического состояния в стеклообразное называется стеклованием . Стеклообразное состояние реализуется также в результате процессов, которые обычно к стеклованию не относят:

  • вытяжка или сшивание полимеров, находящихся в высокоэластическом состоянии;
  • выпаривание растворов полимеров или высушивание гелей при температурах ниже (Т с ) или температуры плавления соответственно.

Основная особенность стеклообразного состояния полимеров – его термодинамическая неравновесность. Взаимосвязь между жидким, кристаллическим и стеклообразными состояниями полимеров можно пояснить с помощью диаграммы объем – температура (рисунок 1).

При охлаждении расплава полимера его объем непрерывно уменьшается вследствие того, что в результате молекулярных перегруппировок расплав переходит из одного равновесного состояния в другое. Если скорость охлаждения достаточно мала, пhи некоторой температуре Т к происходит кристаллизация, сопровождающаяся скачкообразным уменьшением объема (линия АБ на рисунке 1 ). Для многих полимеров при высокой скорости охлаждения кристаллизация не успевает произойти, и вещество остается в переохлажденном жидком состоянии, неравновесном по отношению к кристаллическому (линия АВ на рисунке 1 ). При Т с молекулярное движение становится настолько медленным, что даже за очень длительное время эксперимента перегруппировки не успевают происходить, то есть вещество стеклуется, затвердевает. При температурах ниже Т с стеклообразное состояние неравновесно по отношению как к равновесному жидкому состоянию (пунктирная линия ВД на рисунке 1 ), так и к кристаллическому состоянию.

Термодинамическая неравновесность стеклообразного состояния приводит к тому, что при постоянной температуре Т отж с течением времени структура стекла изменяется, стремясь к равновесной (явление структурной релаксации), с соответствующим изменением свойств (линия ГД на рисунке 1 ). Достижение равновесной структуры практически возможно лишь в узком температурном интервале, когда Т отж меньше Т с на 15-20⁰С.

В стеклообразном состоянии сегментальная подвижность сильно ограничена, однако происходят релаксационные процессы, связанные с вращением концевых или боковых групп, переориентацией небольших участков молекулярной цепи в области дефектов структур, наgример, на поверхности микротрещин. Соответствующие релаксационные переходы можно наблюдать по появлению максимумов на температурных зависимостях физических свойств, например механических и диэлектрических потерь.

По механическому поведению стеклообразное состояние можно разделить на хрупкое , которое реализуется при температурах ниже температуры хрупкости , и нехрупкое . Нехрупкое стеклообразное состояние характеризуется тем, что при достаточно медленном растяжении при напряжениях, превышающих предел , происходит вытяжка полимера. Молекулярная ориентация, возникшая при этом, сохраняется после разгрузки практически неограниченно долго при Т<Т с . Наряженные полимерные стекла с течением времени самопроизвольно растрескиваются.

Список литературы:
Кобеко П.П., Аморфные вещества, М.-Л., 1952 ;
Каргин В.А., Слонимский Г.Л., Краткие очерки по физико-химии полимеров, 2 изд., М., 1967;
Ферри Дж., Вязкоупругие свойства полимеров, пер. с англ., М., 1963

В полимерных твердых телах различают фазовые переходы, связанные со структурными превращениями, и релаксационные, связанные с изменением интенсивности внутримолекулярной подвижности.

Механические свойства полимеров зависят от структуры, физического состояния, температуры и скорости воздействия. Физические состояния полимеров непосредственно связаны с физической структурой и интенсивностью внутримолекулярного теплового движения в них. Переход из одного физического состояния в другое называют температурным переходом.

В зависимости от температуры, полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Схема деформируемости полимера, в зависимости от температуры, приведена на рис.3. 4.

Рис. 3. 4. Термомеханическая кривая полимера

Переход из одного состояния в другое происходит в некотором интервале температур. Средние температуры, при которых наблюдается изменение физического состояния, называются температурами перехода. Температура перехода из стеклообразного состояния в высокоэластическое (и обратно) называется температурой стеклования (Т с), а температура перехода из высокоэластического состояния в вязкотекучее (и обратно) называется температурой текучести (Т т).

Если полимер находится в кристаллическом состоянии, то ниже температуры кристаллизации (перехода аморфной фазы в кристаллическую) он находится в твердом состоянии, но обладает, так же как и аморфный полимер, различной деформируемостью ниже и выше температуры стеклования. Выше температуры кристаллизации кристаллическая часть полимера плавится, и термомеханическая кривая почти скачкообразно достигает высокоэластических деформаций, характерных для некристаллического полимера. Если полимер слабо закристаллизован, то выше температуры стеклования он деформируется практически как аморфный полимер.

Повышение температуры облегчает деформируемость полимера. Поэтому температуры перехода являются основными характеристиками при выборе температуры переработки и эксплуатации полимерных материалов.

Рассмотрим особенности трех состояний полимеров.

Стеклообразное состояние. Температура стеклования разделяет стеклообразное и эластическое состояния аморфного полимера. Ниже температуры стеклования Т с, происходит замораживание кооперативной подвижности независимых элементов основной цепи макромолекул – сегментов и фиксирование неравновесной упаковки макромолекул – застекловывание полимера.

При понижении температуры ниже Т с уменьшается амплитуда колебаний и количество флуктуаций, приводящих к перескоку макромолекулы из одного положения в другое. Это, в свою очередь, приводит к увеличению плотности упаковки молекул и, следовательно, плотности всего образца. При этом подвижность всех сегментов макромолекул становится ограниченной, и полимер переходит в стеклообразное состояние.

Если к такому полимеру приложить деформирующее усилие, то вначале, за счет изменения валентных углов между сегментами, возникает обратимая упругая деформация, величина которой невелика и обычно не превышает нескольких процентов. Как только напряжения станут соизмеримы с величиной межмолекулярных сил, начнется взаимное перемещение сегментов макромолекул. Чтобы подчеркнуть принципиальное различие в механизмах больших деформаций в стеклообразных полимерах и металлах был предложен термин «вынужденная эластичность» для обозначения больших деформаций полимеров. Напряжение, при котором наблюдается переход от начальной упругой к вынужденной деформации, получило название «предела вынужденной эластичности». Предел вынужденной эластичности заметно меняется с изменением скорости деформации. Диаграмма растяжения представлена на рис. 3.5 а.

Рис. 3.5. Диаграммы растяжения полимеров в стеклообразном (а), хрупком (б) и высокоэластическом (в) состояниях: I – область упругих деформаций; II – область вынужденноэластической (а) и высокоэластической (б) деформации

При дальнейшем понижении температуры ниже температуры стеклования в образце наблюдается уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Величина механической энергии, необходимая для активации сегментов и изменения конформации макромолекул, может оказаться выше предела прочности. Полимер разрушается как хрупкое тело при ничтожно малой величине деформации (рис. 3.5, б). Температура, при которой наблюдается это явление, называется температурой хрупкости (Т хр).

Высокоэластическое состояние. Если нагревать застеклованный полимер, то сразу после того, как будет превышена температура стеклования, образец начнет размягчаться и переходить в высокоэластическое состояние. Последнее характеризуется относительно высокой подвижностью сегментов макромолекул. Это приводит к стремлению макромолекул принять самые разнообразные конформации. Наряду с двумя крайними конформациями – полностью выпрямленной и полностью скрученной – существует множество конформаций, обусловленных разной степенью изогнутости макромолекул.

При действии нагрузки макромолекулы, входящие в состав надмолекулярных образований, могут менять свою форму – из скрученных становиться более вытянутыми, что обеспечивает высокую эластичность полимера. После снятия нагрузки тепловое движение более или менее быстро, в зависимости от температуры и величины межмолекулярного взаимодействия, возвратит макромолекулу из вытянутой формы в прежнюю равновесную форму, обеспечив тем самым обратимый характер деформации. Диаграмма деформации такого полимера представлена на рис. 3.5 в.

Вязкотекучее состояние. При дальнейшем повышении температуры выше Т т полимер переходит в вязкотекучее состояние. В этом состоянии он способен необратимо течь под воздействием иногда сравнительно небольших внешних усилий. Процесс вязкого течения обязательно сопровождается раскручиванием макромолекул. Высокая вязкость материала может привести к значительному выпрямлению цепей и их ориентации в направлении приложения силы, что используется для получения ориентированных высокопрочных волокон и пленок.

Определение температур физических переходов в полимерах возможно с помощью термомеханического метода, при котором исследуется зависимость деформации от температуры при постоянных нагрузках. Этот же метод может использоваться для быстрого определения таких важных характеристик полимерных материалов, как температуры стеклования, кристаллизации, начала химического разложения.

При помощи термомеханического метода можно исследовать влияние различных веществ на отверждение полимеров: изучать влияние пластификаторов, наполнителей и других ингредиентов на технологические свойства полимерных материалов. Температуры физических переходов в полимерах могут быть определены также методом дифференциально-термического анализа.

Анализ структуры и физических переходов в термопластичных полимерах, используемых в качестве конструкционных полимерных материалов, позволяет разделить их на три основные группы.

Первая группа - аморфные или трудно кристаллизующиеся полимеры с жесткими макромолекулами, максимальная степень кристалличности которых не превышает 25% и Т с значительно превышает комнатную температуру. К этой группе относятся нерегулярно построенные карбоцепные полимеры: полистирол, полиметилметакрилат, поливинилхлорид, их статистические сополимеры с небольшим числом звеньев другого мономера и ароматические гетероцепные полимеры: простые полиэфиры (полифениленоксид, полисульфон), сложные полиэфиры (поликарбонаты, полиарилаты), полиамиды (фенилон). При комнатной температуре – это жесткие упругие материалы (полимерные стекла), верхний температурный предел эксплуатации которых ограничен Т с. Формование изделий осуществляется при температуре выше Т т (в случае литья или экструзии) или Т с (при штамповке и вытяжке).

Вторая группа кристаллизующиеся полимеры со средней степенью кристалличности, Т с которых довольно близка к комнатной температуре. К этой группе относятся полиметилпентен, политрифторхлорэтилен, пентапласт, алифатические полиамиды. Верхний температурный предел эксплуатации таких полимеров определяется степенью кристалличности и может колебаться от Т с аморфной фазы до температуры плавления (Т пл) кристаллической, а переработка в изделия производится выше Т пл.

Третья группа кристаллизующиеся полимеры с высокой степенью кристалличности, Т с аморфной фазы которых значительно ниже комнатной. К этой группе относятся полиэтилен, полипропилен, полибутен-1, политетрафторэтилен и полиформальдегид. В нормальных условиях в этих полимерах сочетаются свойства, присущие аморфной фазе, находящейся в эластическом состоянии, и жесткой кристаллической фазе. Поэтому в интервале Т с < Т < Т пл их поведение в решающей степени определяется степенью кристалличности. Верхний температурный предел эксплуатации обычно ограничивается Т пл. Ниже Т с аморфной фазы полимеры становятся жесткими и хрупкими полимерными стеклами. Формование изделий литьем или экструзией осуществляется выше Т пл, штамповкой – вблизи Т пл. Механические свойства и степень кристалличности наиболее используемых полимеров приведены в таблице 3.1.

По отношению к нагреву

Полимерные материалы изменяют свои свойства под воздействием температуры. По этому признаку различают термопластичные и термореактивные полимеры.

Термопластичные полимеры (термопласты) при нагреве размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим, Структура макромолекул таких полимеров линейная и разветвленная.

Термореактивные полимеры (термореакты) на первой стадии образования имеют линейную структуру и при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми. Отвержденное состояние полимера называется термостабильным.

Механические свойства и степень кристалличности наиболее используемых полимеров приведены в таблице 3.1.


ОРИЕНТИРОВАННОЕ СОСТОЯНИЕ ПОЛИМЕРОВ

состояние тел из линейных полимеров, характеризуемое тем, что оси достаточно протяженных распрямленных участков цепных макромолекул, составляющих эти тела, расположены преим. вдоль нек-рых направлений - осей ориентации. Так, в пленках полимерных могут реализоваться виды плоскостной ориентации: двухосная, радиальная. Простейший и наиб. распространенный вид ориентации линейных полимеров - одноосная ориентация.

Ориентир. широко распространены в растит. мире (напр., хлопок, лен) и животном (сухожилия, мышечные ткани, шерсть и др.). Практически всюду в природе, где требуются прочные и гибкие элементы структуры, они формируются из ориентир. полимеров.

В технике ориентир. получают в осн. ориентац. вытягиванием (на десятки - тысячи процентов) изотропных полимерных тел, нагретых выше т-р стеклования. В результате цепные макромолекулы, хаотически (статистически) ориентированные в исходном теле, под воздействием внеш. направленного растягивающего усилия приобретают ту или иную степень ориентации. В аморфном гибкоцепном полимере ориентир. состояние является неравновесным и, чтобы его зафиксировать, необходимо охладить полимер ниже т-ры стеклования, не снимая растягивающего напряжения. В случае гибкоцепных кристаллизующихся полимеров О. с. п. можно считать равновесным ниже т-ры плавления кристаллитов и снятие растягивающего напряжения при т-ре вытяжки не ведет к разориентации, т. к. кристаллиты образуют ориентир. каркас, сохраняющий аморфные участки полимерного тела в О. с. п.

При получении ориентир. гибкоцепных полимеров двухступенчатым методом вначале осуществляют ориентацию р-ра или расплава полимера. Этого достигают созданием потоков с градиентами скорости (поперечным или продольным), в результате чего длинные цепные молекулы ориентируются преим. вдоль направления потока. Происходящая при этом фиксирует достигнутое состояние, что приводит к образованию ориентир. полимера. Послед. вытягивание в твердой фазе доводит полимерный материал (или изделие) до сверхвысокоориентир. состояния.

Для жесткоцепных полимеров О. с. п. является равновесным и достигается двухступенчатым методом: вначале при сравнительно умеренной т-ре вытягиванием из р-ра формуют ориентир. "заготовку", затем следует термообработка при повыш. т-ре, приводящая к значит. увеличению ориентац. порядка в полимере (явление типа направленной кристаллизации).

Ориентир. полимеры содержат характерные надмолеку-лярные образования-фибриллы-с поперечным размером ~ 10-100 нм и протяженностью не менее ~1-10 мкм.

Одноосноориентир. полимерные тела отличаются высокой анизотропией мех., акустич., оптич., электрич. и др. св-в. Поэтому чувствительные к анизотропии методы (напр., дифрактометрия, ЯМР, ЭПР, ИК , акусто-спектроскопия, измерение двулучепреломления) эффективны при изучении ориентир. полимеров. Последним присуща также характерная аномалия термич. расширения: отрицат. коэф. расширения вдоль оси ориентации. Это связано с поперечными колебаниями распрямленных участков цепных молекул, амплитуда к-рых много больше, чем продольных колебаний, а также с конформац. "скручиванием" ориентир. участков макромолекул в аморфных областях, что ведет к сокращению размеров этих областей вдоль оси ориентации полимера. Важное техн. св-во ориентир. полимеров -повыш. при растяжении и жесткость вдоль оси ориентации при сохранении достаточной гибкости. Это обусловлено тем, что вдоль оси ориентации работают гл. обр. хим. связи, в перпендикулярном направлении-межмолекулярные. Так, теоретич. значения и модуля продольной упругости для волокна составляют соотв. 20-30 и 250 ГПа; для техн. ориентир. полимерных волокон 0,5-1,0 ГПа, 20-50 ГПа; для высокоориентир. волокон 5-10 ГПа, 100-150 ГПа, что близко к теоретич. значениям и является большим техн. достижением.

Высокие мех. характеристики в сочетании с низкой плотностью, хим. и термич. стойкостью (этим отличаются жест-коцепные полимеры; они содержат циклич. группы в основных цепях макромолекул) определяют все более широкое использование ориентир. полимерных волокон: тросы, канаты, ткани, армирующие элементы в разнообразных ком-позиц. материалах и др. В технике широко распространены, напр., полиамидные, полиолефиновые, полиэфирные, поли-имидные, полиакрилонитрильные волокна. См. также Волокна химические, Формование химических воллкон.

Лит.: Марихин В. А., Мясникова Л. П., Надмолекулярная структура полимеров. Л., 1977; Сверхвысокомодульные полимеры, под ред. А. Чиферри, И. Уорда, пер. с англ.. Л., 1983. А. И. Слуцкер.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ОРИЕНТИРОВАННОЕ СОСТОЯНИЕ ПОЛИМЕРОВ" в других словарях:

    Состояние тел из линейных полимеров (См. Полимеры), в котором длинные цепные молекулы, составляющие эти тела, имеют преимущественное расположение своих осей вдоль некоторых направлений. Простейший и наиболее часто встречающийся на… …

    Характеризуется тем, что звенья макромолекул образуют структуры с трехмерным дальним порядком. Размер этих структур не превышает неск. мкм; обычно их называют кристаллитами. В отличие от низкомол. в в, полимеры никогда не кристаллизуются нацело,… … Химическая энциклопедия

    Направленное изменение физ. хим. и (или) хим. св в полимеров. Различают М. п.: 1) структурное модифицирование физ. мех. св в без изменения хим. состава полимера и его мол. массы, т. е. изменение надмолекулярной структуры полимера; 2)… … Химическая энциклопедия

    - (пластмассы, пластики), полимерные материалы, формуемые в изделия в пластическом или вязкотекучем состоянии обычно при повыш. т ре и под давлением. В обычных условиях находятся в твердом стеклообразном или кристаллич. состоянии. Помимо полимера… … Химическая энциклопедия

    Сплошные слои полимеров толщиной, как правило, менее 0,5 мм. Изготовляют гл. обр. из синтетич. полимеров (соответствующие пленки, имеющие наиб. практич. значение, рассмотрены в данной статье). Получают П. п. также из прир. полимеров (напр.,… … Химическая энциклопедия

    Материалы на основе вы сокомол. соед.; обычно многокомпонентные и многофазные. П. м. важнейший класс совр. материалов, широко используемых во всех отраслях техники и технологии, в с. х ве и в быту. Отличаются широкими возможностями регулирования… … Химическая энциклопедия

    - (от греч. polymeres состоящий из многих частей, многообразный) химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы (См. Макромолекула)) состоят из большого числа… … Большая советская энциклопедия

    - (р. 20.XI.1932) Сов. физикохимик, чл. кор. АН СССР (с 1987). Р. в с. Верхний Снежет Тульской обл. Окончил Московский ун т (1956). С 1956 работает там же (с 1970 проф.). Одновременно работает (с 1970) в Физико хим. ин те им. Л. Я. Карпова. Осн.… … Большая биографическая энциклопедия

    - (полимеры), характеризуются мол. массой от неск. тысяч до неск. (иногда многих) миллионов. В состав молекул В. с. (макромолекул)входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или… … Химическая энциклопедия

    РД 25.03.001-2002: Системы охраны и безопасности объектов. Термины и определения - Терминология РД 25.03.001 2002: Системы охраны и безопасности объектов. Термины и определения: 2.36.8 аварийное освещение (на охраняемом объекте): Действующее при аварии на объекте только в момент отключения основного освещение, позволяющее… … Словарь-справочник терминов нормативно-технической документации

Свойства полимера зависят не только от химического состава полимера и формы макромолекулы, но и от их взаимного расположения. Макромолекулы разных полимеров имеют различный химический состав, длину, форму и степень гибкости. На гибкость цепей макромолекул значительное влияние оказывают силы межмолекулярного взаимодействия. Эти силы ограничивают в известной степени свободу перемещения отдельных звеньев цепи.

Характер вращения цепи определяется кинетической энергией макромолекулы, и для изменения как характера вращения, так и формы цепи требуется сообщить ей определенное количество энергии (например, тепловой), которое называется энергетическим барьером макромолекулы. В зависимости от пространственного расположения макромолекулы друг относительно друга изменяются степень их гибкости и эластичность полимера, что, в свою очередь, определяет характер деформации материала при механическом воздействии.

По степени упорядоченности расположения макромолекул различают два типа фазовых состояний полимеров: аморфное и кристаллическое. Аморфная фаза характеризуется хаотическим расположением макромолекулы в ВМС с некоторой упорядоченностью структуры, соблюдаемой на относительно небольших расстояниях, соизмеримых с размером макромолекулы. Кристаллическая фаза характеризуется упорядоченным расположением макромолекул в полимере, при этом упорядоченность соблюдается на расстояниях, превышающих размеры макромолекулы в сотни и тысячи раз (рис. 1).

Кристаллическая зона

Аморфная зона

Рис. 1. Схематическое изображение глобулы полимера

Аморфные и кристаллические полимеры существенно различаются по своим свойствам.

Аморфные полимеры с линейной или разветвленной структурой макромолекулы могут находиться в трех физических состояниях:

1. Стеклообразное . Такое состояние характеризуется наиболее прочными силами связи между молекулами и, как следствие, наименьшей гибкостью макромолекулы. Чем ниже температура полимера, находящегося в стеклообразном состоянии, тем меньшее число звеньев обладает подвижностью, и при определенной температуре, называемой температурой хрупкости, стеклообразные полимеры разрушаются без деформации (или малой деформации), подобно низкомолекулярным стеклам.

2. Высокоэластическое состояние характеризуется менее прочными силами связи между макромолекулами, большей их гибкостью и, как следствие, способностью длинных цепных молекул непрерывно изменять свою форму. В высокоэластическом состоянии малые напряжения вызывают быструю смену форм молекулы и их ориентацию в направлении действия силы. После снятия нагрузки макромолекулы под влиянием тепловых движений принимают наиболее энергетически выгодные формы, вследствие чего первоначальные размеры полимера восстанавливаются (обратимая деформация). При этом изменяется положение только отдельных звеньев и участков цепей, а сами макромолекулы не совершают поступательного движения друг относительно друга. Полимеры, аморфная фаза которых находится в высокоэластическом состоянии в широком интервале температур, называются эластомерами или каучуками (например, температурный интервал высокоэластического состояния натурального каучука от –73 до +180 °С, кремнийорганического от –100 до +250 °С).



3. Вязкотекучее состояние характеризуется исчезновением сил связи между макромолекулами, вследствие чего они не имеют возможности перемещаться друг относительно друга. Это может произойти при нагревании полимера до определенной температуры, после чего высокоэластическое (или стеклообразное) состояние сменяется вязкотекучим. Высокоэластическое состояние – характерный признак ВМС.

Кристаллические полимеры отличаются тем, что они наряду с кристаллической содержат и аморфную фазу. Благодаря очень большой длине молекул и вероятности ослабления сил межмолекулярного взаимодействия на отдельных участках цепей в полимере, как правило, не может образовываться сплошная кристаллическая фаза. Наряду с упорядоченно расположенными участками цепей возникают участки с хаотично расположенными звеньями, что приводит к образованию аморфной фазы в кристаллическом полимере. Основным условием, определяющим возможность кристаллизации полимеров, является линейное и регулярное строение макромолекул, а также достаточно высокая подвижность звеньев при температуре кристаллизации. Если замещающие атомы малы, то полимеры могут кристаллизоваться даже при их беспорядочном расположении, например атомы фтора в поливинилфториде

(−СН 2 −СН−) n

При наличии боковых, замещающих атомов водорода групп (С 6 Н 5 ~, СН 3 ~ и др.), кристаллизация возможна только в том случае, если макромолекулы имеют свернутую форму, их ориентация друг относительно друга затруднена и процессы кристаллизации, требующие плотной упаковки молекул, не протекают – полимер находится в аморфном состоянии.

Для образования кристаллической фазы необходимо, чтобы макромолекулы имели относительно распрямленную форму и обладали достаточной гибкостью, в этом случае происходит ориентация макромолекул и достигается их плотная упаковка. Полимеры, у которых макромолекулы лишены гибкости, не образуют кристаллической фазы.

Процессы кристаллизации развиваются только в полимерах, находящихся в высокоэластическом и вязкотекучем состояниях. Существуют следующие разновидности полимерных кристаллических структур:

Пластинчатые,

Фибриллярные,

Сферолитные.

Пластинчатые кристаллические структуры представляют собой многослойную систему из плоских тонких пластин, макромолекулы в которых многократно сложены. Фибриллы , состоящие из выпрямленных цепей макромолекул, имеют форму ленты или нити. Сферолиты – более сложные кристаллические структуры, построенные из фибриллярных или пластинчатых структур, растущих радиально с одинаковой скоростью из одного центра. В результате такого роста кристалл принимает форму шара размером от десятых долей микрона до нескольких миллиметров (иногда до нескольких сантиметров).

К числу кристаллических полимеров относятся полиэтилен (низкого давления), политетрафторэтилен, стереорегулярные полипропилен и полистирол, ряд сложных полиэфиров.

Кристаллические полимеры по сравнению с аморфными обладают большей прочностью. Кристаллизация придает полимеру жесткость, но благодаря наличию аморфной фазы, находящейся в высокоэластическом состоянии, кристаллические полимеры эластичны.

При нагревании до определенной температуры кристаллические полимеры переходят непосредственно в вязкотекучее состояние аморфных полимеров.

Рассмотренные закономерности фазовых состояний полимеров относятся к полимерам с линейной или разветвленной структурой макромолекул.

В ВМС с пространственной структурой фазовые состояния определяются частотой сшивок (числом валентных связей между макромолекулами).

Полимеры с частым расположением связей (трехмерные) жестки и при всех условиях образуют аморфную фазу, которая находится в стеклообразном состоянии. ВМС с редкими сшивками (сетчатые) образуют аморфную фазу, находящуюся в основном в высокоэластичом состоянии.